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1. INTRODUCTION

E In jet engines, non-uniformities in the oncoming flow,

caused perhaps by non-uniformities in the engine inlet, give

rise to unsteady (possibly oscillatory) aerodynamic fluctua-

tions, with the probability of structural-aerodynamic coupling

in the compressor. This coupling can lead to flutter or other

undesirable aeroelastic phenomena. It is highly desirable to

be able to predict both the oscillatory aerodynamic forces and

the structural-aerodynamic coupling in a compressor in order

to find ways of alleviating or avoiding possible aeroelastic

problems.

* . Because the flow through a real turbomachine is so com-

plicated, various approximations have been developed which do

not require inordinate amounts of computer time. A very common

approximation consists of "unrolling" a blade row and treating

it as an infinite two-dimensional cascade. If there are N

identical blades, identically fixed in an axisymmetric rotor

and equally spaced around the rotor circumference, then the

cascade exhibits a fundamental periodicity every N blades.

This is the fundamental periodicity of unsteady cascade flows.

For steady flow through a rigid cascade, there are many

instances where it is necessary to treat only the flow through

a channel formed by two adjacent blades, that is, the funda-

mental periodicity of a steady cascade flow is one blade

7passage.

This problem is not so simple for an oscillating cascade.

Although it is not difficult to formulate the elastic and

inertial terms for the dynamic analysis of such a cascade,

determining the unsteady aerodynamic loads is a truly formidable

task, in view of the large number of different modes that are

possible and the complicated nature of the aerodynamic coupling

between blades. However, Lane (ref. 1) has been able to show

that under certain circumstances there are only certain types

of modes that can exist at flutter. If the blades are assumed
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to be rigid, and the flow field equations can be linearized so

that the principle of superposition is valid, then the only

aeroelastic mode shapes that can exist - that is, the only

eigenvectors that the system will have - involve the same

contribution from the degrees of freedom of each blade, with

each blade lagging (or leading) its neighbor by a constant

phase. This means that the problem of determining the gener-

alized aerodynamic forces for a cascade flutter analysis has

been reduced to finding the forces for certain discrete modes -

those involving a constant phase lag (or lead) from one blade

to the next, with identical relative contributions from each

blade mode.

If such a superposition principle holds in the transonic

regime as well, then the transonic indicial method (refs. 2

*and 3) can be applied. In this method, the essential nonlin-

*i earity of the solution, caused by the motion of the shock

waves, is eliminated by means of a strained coordinate technique.

Finite difference calculations of the unsteady aerodynamic

behavior of the cascade are therefore needed to calculate the

response of the flow field to oscillatory and transient (step-

wise, indicial) motions of the cascade, and to determine whether

individual blade motions in the transonic regime can indeed be

superimposed. The code described below will perform such finite
difference calculations, provided that the cascade is unstag-

gered, of low camber, and composed of thin airfoils whose angle

of attack or plunge amplitude undergoes small perturbations.

Although the main part of this report is concerned with

the development of a computer code to treat the unsteady flow

-through cascades, some work has been done on the decoupling of

the full cascade problem with variable interblade phase lag

to the superposition of a number of elementary solutions that

are independent of the phase lag. This analysis is given in

Appendix A. Appendix B concerns a suggestion to reduce the

computer storage necessary to calculate the elementary solution.

Because of funding limits this idea was not implemented.
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2. BASIC EQUATION

Computer codes for the simulation of unsteady transonic

flows around isolated airfoils are in common use. These codes

-. usually solve the transonic small disturbance (TSD) equation,

since it may be solved consistently with a thin airfoil

Pboundary condition. Full potential or Euler equation solvers

require body fitted coordinate meshes, and for unsteady flows

would require continual regeneration of the mesh.

We present here the first steps in a program to provide

an unsteady analysis capability for transonic cascade flows,

both by direct finite difference calculation and by the more

- economical perturbation theory. The simplest model problem

-for unsteady cascade flow is the unstaggered cascade of thin

-* airfoils of low camber for which we can use the following

form of the TSD equation (ref. 4):

A0tt + 2BOxt = xx + 0yy

"" :2 2 = 2 -2/ 3

A k (i)

B =AkI

c (i-2 -2/3 - X
C =(1 - 14)623-( + l)MqO

Here * is the velocity potential, U. and M. are the free
stream velocity and Mach number, respectively, y is the

adiabatic index, 6 is the thickness parameter and q is the

transonic scaling parameter. The quantities x, y, t,

are in the scaled units of reference 4. The reduced frequency

-- based on chord c is k = wc/U.

Ballhaus and Goorjian (ref. 4) solve Equation (1) in the

case where A = 0, which applies for reduced frequencies less

than about 0.2. The unsteady effects which we wish to study,

. primarily cascade flutter, occur at reduced frequencies (based

3
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on blade chord) of about one to ten. Since LTRAN2 is not

designed for these frequencies, high frequency modifications

must be made.

Houwink and van der Vooren (ref. 5) and Hessenius and

Goorjian (ref. 6), solve Equation (1), still with A = 0, but

with improvements in the definition of Cp, and the airfoil

and wake boundary conditions. Rizzetta and Chin (ref. 7)

solve the full Equation (1) including the A0tt term, with

improved boundary conditions, but report that they encounter

stability problems. The modifications which we have made

are described next.

3. HIGH FREQUENCY CODE HTRAN2

LTRAN2 has two components, a steady TSD equation solver

by either successive line over-relaxation (SLOR) or approximate

factorization (AF2) algorithms, and an unsteady solver based

on the alternating direction implicit (ADI) algorithm. Only

the unsteady solver is modified for high reduced frequencies.

The airfoil boundary condition is applied on the split

coordinate line at y = 0 (see Fig. 1).

3.1 Changes in the Algorithm

The high frequency modification requires two changes in

the LTRAN2 algorithm. First, the tt term is represented by

a first order accurate three-point backward difference

n+l n n-l2

Ott ( -2) 2 + AtO ttt + O(At ) (2)

(At)

This term requires the carrying of two extra levels of storage,

and was also implemented by Rizzetta and Chin (ref. 7).

Another change is necessary for stability. In the orig-

inal LTRAN2 algorithm, the first-order 0xt difference has a

leading truncation error Atoxtt* This is small compared to

4



B xlbut can be comparable to the A tt term. Hence, we replace

the first order difference in *.t by a second order, three-point

backward difference,

____=_3____ + 1 (A)2

+ O(At 3,

We have found that this change in the algorithm leads to greatly

enhanced stability.

- The total algorithm is thus (compare ref. 4), x-sweep:

-1 n +n-1
1 ) ,k x j,k yy Ilk

*~ y-sweep:

A(At) -2 (n+l 2 2 n + n-l )j + 3B(AtQl (30 n+l _ 3;)j,k

1 6 (n+l 0n)
2 y ~ j,k

total:

[A(At) -2+ 3B(At ) -l - e+1y]~~

=Dxf. + 1 6 A + Bt)-l (40 n 0n-l
iljk 7 ~yj ,k Bt 1  - *

- - + A(At) 2(2 0n - 0l

The term Dxfj~ on the right hand side of Equation (3) of

Reference 4 is the nonlinear term, including type-dependent

differencing by means of a switching operator. This algorithm,

like that of LTRAN2, is in conservation form.

5



3.2 " hanges to the Boundary Conditions

Except for the wake condition, the changes to the boundary

conditions are the same as those of reference 7, namely the

definition of the pressure coefficient,

C= -262/3( x + k t) (6)
Cpx

the airfoil tangency condition

Oy = fx + kft (7)

where f(x,t) represents the airfoil surface, the downstream

boundary condition

x + kt =0 (8)

and the initial cundition

Ot(0) = h(x,y) (9)

We take h(x,y) = 0. The mesh schematic for LTRAN2 and HTRAN2

appears in Figure 1.

3.3 Wake Condition

In order to derive the correct wake condition for the TSD

Equation (1) we write it in divergence form

S- (At + 2BOx) ax 1(i- Mo)6"-2/3 Ox

y+ 1 q l- =0

2 M~j~- x(ay )

Let the wake be represented by the curve y = f(x,t). Then

the jump condition across the wake is given by

6



[A + 2B.X]+ df _ (1 - M2 ) 6-2/3

y df+- 2 moo 0 x

Here [ + represents the jump between upper and lower surfaces.

Requiring continuity of velocity normal to the wake implies

-df [x]+6-2/3 + [oyj+ = 0 (2S- d x (1_2y)

Hence,

[AO + 2Bx] df + (M2)6-2/3 + y + 1 M 0x dx 0 (13)
2 2

Dividing by M26 - 2/ 3 we obtain

k kt + 20x ] ft + + y + 1 6 2/3Mq2 021+ f = 0 (14)_ 2 _O x

which is a differential equation for f(x,t). Continuity of

pressure across the wake [Cp] + = 0 means

+ kt]_ = 0, or r + kr t = 0 (15)

* where

r, r = r(kx - t)

thus we obtain from Equation (14) upon substitution of

" Equation (15):

kft + 1+ + 1 6  M2 / 3 V (0+ + )]f = 0 (16)

which is a partial differential equation for the wake surface

f(x,t).

7



Unfortunately, it is difficult to satisfy Equation (16)

exactly, so we must look at various approximations for it.

The limiting case y - -1 (the Prandtl-Glauert theory) for

Equation (16) is the linear wave equation kf + fx = 0, with
t x

solution f(x,t) = f(kx - t).

The low frequency limit k -) 0 of Equation (16) is merely

f >> ft and

fx 0, (x,t) = F(t) (17)

as used by Ballhaus and Goorjian in LTRAN2.

In the high frequency limit we have kft >> fx and

k t >> x Unfortunately, the LTRAN2 mesh geometry does not

permit a nonvanishing fx" In order to be consistent with the

TSD jump condition, Equation (14) we must have then for

f x 0,
x

[kot + 20xIft z 0 (18)

which implies that the circulation propagates according to

r + k 1 
t = 0 (19)x 2t

C+

There is a small nonvanishing [C I in this case, but numerical

experiment shows it to be small, whereas violating Equation

(14) by imposing Equation (15) and fx = 0 causes the code to

become unstable. For frequencies lower than k = 0.2, the

original wake condition, Equation (17), is used. Although

the *x term can be formally neglected in Equation (18) it is

consistent to retain it in the present application since it is

also retained in the basic equation, Equation (10).

8



4. MESH AND BOUNDARY CONDITIONS: STEADY CALCULATION

The steady solution for a cascade has all the blades at

the same angle of attack. The solution is periodic, with a

period of one blade spacing. Therefore, we solve the steady

TSD equation for a single blade period, with periodic boundary

conditions fore and aft, and airfoil boundary conditions for

the blade surfaces at the top and bottom of the grid. This is

* illustrated in Figure 2. The mesh spacing in the x-direction

is the same exponentially stretched mesh used in LTRAN2, but

- in the y-direction the mesh is clustered near the blade surfaces

*and symmetric about the line midway between adjacent blades.

Note that the blades and wakes are represented by split

coordinate lines aft of the leading edge gridpoint.

In developing the steady solution, two examples were

run. For a NACA 0012 airfoil, solutions were calculated both

for free air and periodic boundary conditions. At M. = .75

we see the comparison in Figure 3. We could not obtain a

converged solution for Moo = .8 and cascade boundary conditions.

We expect that this is because the sonic line extends across

the entire interblade spacing and that the code is exhibiting

the same choking phenomena seen in real cascades, where the

supersonic outflow does not permit enough mass to flow through

the blade passage.

5. MESH AND BOUNDARY CONDITIONS: UNSTEADY CALCULATION

The unsteady solution is periodic over the whole cascade

of N blades, so the unsteady calculation takes place on a

mesh which is an N-fold replica of the steady-state mesh.

Thus the entire cascade is represented, as can be seen in

Figure 4. Again, the blades and wakes are represented by

split coordinate lines.

First, the grid is swept in the y-direction from bottom

to top with implicit quadridiagonal solvers used on the

9



y-constant lines. The interblade lines, the upper surfaces,

and the lower surfaces are solved in turn, just as in LTRAN2.

Next the grid is swept in the x-direction. For the region

ahead of the leading edge, periodic boundary conditions are

used with a period of the entire grid (N interblade spaces),

and the periodic tridiagonal solver is used. From the leading

edge to trailing edge, each x-constant line for each interblade

region is solved using a separate tridiagonal inversion with

thin airfoil boundary conditions applied at both ends. Aft of

the trailing edge, the periodic solver for the entire cascade

(N blades) is used, with the upper surface potentials being
obtained by adding the corrected circulation propagated back

from the trailing edge according to the wake condition,

Equation (19).

6. TEST RUNS OF THE CODE

The high frequency unsteady code equipped with periodic

cascade boundary conditions will be called CHTRAN2. It can

be applied to calculation of unsteady motions in either of

two ways, just as LTRAN2 can. The code may be applied directly

to calculate the oscillatory (flutter) motion of a cascade

at a specified reduced frequency and interblade phase lag,

or it may be used to calculate indicial responses in conjunction

with the elementary solution of Appendix A, which are then

inserted into convolution integrals (ref. 8) to determine the

unsteady motion. The latter method has the advantage that

a single calculation applies to a wide range of reduced

frequencies and interblade phase angles.

* The indicial response calculated here is for a 0.25 degree

step change in angle of attack for blade #3 in a cascade of

N = 5 blades, with all other blades remaining fixed. That is,

the elementary solution of Appendix A. The airfoil shape is
an uncambered NACA 0012, and the spacing between blades is one

chord length. The free stream Mach number is 0.75. The

10
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- indicial function for lift coefficient for the moving blade
is illustrated in Figure 5. The expected time delays for the

Ineighboring blades are present in their indicial functions,
not illustrated here.

6.1 Agreement Between Finite Difference
*and Indicial Calculation

Both finite difference (CHTRAN2) and indicial calculation

(program CONVOL, ref. 9) which evaluates Duhamel's integral

(ref. 8) were run for a five-blade cascade oscillating with

all blades in phase. Figure 6 shows a low frequency case,

k = 0.2, that shows almost exact agreement in the finite

difference and convolution calculations of unsteady lift.

Figure 7 shows a high frequency case. Here, the higher

harmonics found in the finite difference schemes are not

reproduced by CONVOL. In general, CONVOL will only produce

those harmonics which are present in the forcing function.
S

7. HARMONIC ANALYSIS FOR FREE AIR AND CASCADES

Runs were made of CHTRAN2 in the case of an unstaggered,

* six-blade cascade of NACA 0012 airfoils with relative phase

difference of 1800 between the blades. Both torsional and

bending modes were run at Mach numbers of 0.5 (to compare

* with Verdon and Caspar, ref. 10) and Mach 0.75 (to illustrate
wthe transonic effects). A calculation using HTRAN2 for an

isolated airfoil oscillating in angle of attack at Mach 0.80

was also run, to compare the unsteady transonic forces on an

* isolated airfoil with the cascade example at Mach 0.75 (the

difference in Mach number is taken so that the sonic regions

in each case are similar). The bending mode is illustrated

in Figure 8 and the torsional mode in Figure 9.

Bending Mode - Figure 8 shows the real and imaginary

parts of the first harmonic of the unsteady pressures for the
fourth cycle of oscillation in airfoil plunge, of amplitude

11



Z= .005 chords, which corresponds to the blade bending mode.

The phase difference between adjacent blades is 1800. The

subsonic results show the same behavior as those of Verdon

and Caspar (ref. 10), plotted in their Fig. 8, p. 47. The

transonic case shows a phase change occuring in the region

near the shock. Similar behavior was observed in a calculation

for an isolated airfoil at M. = 0.8.

Torsional Mode - Figure 9 shows the results of our

calculation of the real and imaginary unsteady pressure

coefficients for an oscillation of amplitude 1.00 in angle-

of-attack, which corresponds to the blade torsion mode. The

subsonic case compares in shape with Verdon and Caspar (ref. 10,

Fig. 9, p. 48). Here again, the transonic case compares

with the isolated airfoil at M. = 0.8.

8. CONCLUDING REMARKS

In its present stage of development, the code CHTRAN2

can simulate by finite differences the unsteady transonic

flow through an unstaggered cascade of up to 12 thin airfoils

of low camber, such as might be found in a compressor, with

arbitrary motion of each blade. The next step will be to

allow for staggering of the blades. At that point it should

be possible to compare the numerical calculation with experiment.

For turbine flows with a large turning angle, it will be

necessary to rederive the small disturbance theory for pertur-

bations about a steady turning flow.

For cascades of more than about 20 blades, the storage

on the CDC-7600 computer is inadequate. But even for fewer

blades, it will be worthwhile to investigate the extent to

which the behavior of the full flow field can be reconstructedKfrom the solution for a single blade passage. If this can

be done, the indicial method would be of even greater value.

Further tests of the indicial method are planned. It

should be borne in mind that the indicial method is independent

12
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of the particular finite difference code used. Thus, when full

potential solvers for the cascade problem become available,

the indicial method should be applicable.

B
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APPENDIX A

NOTES ON THE COMPUTATIONS OF UNSTEADY
TRANSONIC CASCADE FLOWS

In an oscillating cascade there is by definition a

*fundamental periodicity that occurs every 2N blades (2N is

* the number of blades in the compressor row). The unsteady

flow at each blade will have a periodic boundary condition,

* as in steady flow, but will lag by a phase angle of (p/N)n

in relation to the neighboring blade, where p is an integer

less than or equal to N whose value is determined as part

of the flutter solution. In a nonlinear transonic numerical

* .. scheme the choice is between computing the entire 2N blade

sequence with the usual periodic boundary conditions at the

= extremities, or to compute the usual three blade cascade

-. problem for each specified value of p. These numerical

calculations are comoputationally expensive and it is desirable

* to reduce the overall cost of a flutter calculation. Both of

- these choices involve a large amount of computer time for

* practical cases, and in case of the first choice, a major

development of a computer code. However, it is possible to

devise a simpler approach to the problem.

The basic idea of this paper is to devise an elementary

* problem in which only one blade is in motion, the others being

fixed; the motion may be any general time dependent function.
This removes the problem of computing the flow for each blade

phase angle. This elementary problem is solved for a particular

moving blade and the functional form of the velocity potential

for both space and time is then known. Because of periodicity

in both space and time these elementary solutions can be super-

imposed, with reparameterized space and time variables, so that

the sum of the solutions satisfies both the basic differential

equation and the correct boundary conditions on every blade.

Although the most important application of this superposition

15



"* principle is the development of the correct linearization of the

transonic flow equations with discontinuities, these equations

are much too complicated for an illustration of the superposition

-. technique. Hence, in the following only a simple, subsonic

problem is examined. The general theory is directly extendable

to discontinuous transonic flows using the strained coordinate

theory of Nixon (ref. 2).

ANALYSIS

Consider the cascade of 2N blades pictured in Figure 10

where blade J+N and blade J-N are identified. The equation

for the perturbation velocity potential, *(i,t), due to a

time-dependent behavior of the blades, will be linear and

j can be represented as follows:

L(x,t) = 0 (Al)

Here, x is a general vector coordinate centered on the blade

of interest, t is time, and L(x,t) is a differential operator

with variable coefficients. These coefficients arise from

the mean steady flow solution about which the flow is perturbed,

are functions only of x, and are periodic in space with

period of 2N blades. The time t only occurs through the

inclusion of time derivatives. Such an operator occurs in the

subsonic flow analysis of Verdon and Caspar (ref. 10) who use

the equation

+ v. . v} (~+ Vi - V] + (y - l)VO (L + vO v

u-- V ](t-at
"+ [V0721 V

where 0 is the steady state potential. For a staggered cascade

the upstream and downstream boundary conditions will depend

on the particular region of the flow that is being considered,

16
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for example the far upstream boundary DUj and the far down-
stream boundary DDj shown in Figure 10. The boundary conditions

will depend on the steady far field velocity, which has spatial

periodicity and on the phase of the waves produced by the

oscillating cascade. Since the individual blade flows are

identical except for phase lag of jt , it follows that the

I far field boundary conditions are

-u(Xu,t) = gU(Xutj) on DUjj = -N,N!:: [(A2)

O *D(xD't) = gD(D'tj)  on DDj, j = -N,N

where xU , XD denote the location of the upstream and downstream

boundaries, respectively, and gu and gD are the corresponding

spatially asymptotic values of *(x,t). The time tj is given

by t t - jt where to is the interblade phase lag. The

i°  tangential boundary conditions are

Svj (±x,t) = fj (±x,tj) on Sj; j = -N,N (A3)

where v. is the normal velocity component, fj is a function of

the specified perturbation of blade geometry and S. denotes the
- location of the jth blade surface. The ± signs denote condi-

tions on the upper and lower surface of the blades, respectively.

The effect of the interblade phase lag is seen in Equations (A2)

and (A3) where the potentials 0 U' OD or the velocity of the

jth blade at time t are given in terms of a function at a time

tj. For blade number 0, periodicity can be applied on j = ±N.

In addition to the above boundary conditions the wake condition

is

ACp (,t) = 0 on w.

where ACp is the pressure jump across the wake of the jth

blade, wj, and is a function of O(i,t). Now if the principle

of superposition holds then a variable j(xEj,t) can be intro-

duced such that

17
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N
(x, = t) (x,t) (A5)

j!-N

where

x. x -x.|J J

and R. is the location of the general coordinate system

centered on the jth blade and xo  x. Assume that 0j is

such that

L(x,t)0. 0 (A6)

It is obvious that if Equation (A6) is used with Equation (A5)

then Equation (Al) is recovered.

The operator L(x,t) is a differential operator with

coefficients that are functions of the steady flow over a

cascade and hence L(x,t) is periodic in the spatial dimensions.

Thus L(x,t) is the same no matter on which blade the coordinate

system is centered. Hence

L(x,t) = L(xj,t) (A7)

Furthermore, since t only appears in the operator through a

derivative then the variable t can be replaced by t Thus

L(x,t) = L(xj,t.) (A8)

Using Equations (A6) and (A8) then gives

L(xj,tj) . = 0 (A9)

The next task is to determine suitable boundary cond-

ei itions. Let

18
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(xut) = (Xu't on DUj

(*j(XDtj) = gD(XDItj) on DDj

(Al0)

(- j( t) = 0 on DUk, k j

.. j(XDtj) = 0 on DDk, k ' j

- vj(-x,tj) =ys(-+xj,te) on Si

. j( -Xik),tj] = 0 on Sj+k k = ,N- 1
L (All)

vj[±(Xj + x ),tj] = 0 on Sj - t 1,N- 1

AC pj(j,tj) = 0 on w.

* where

N:'i Cp(F, t) = 1[Cp M1~) A2)

U It should be noted that in the (x.,t.) coordinate system each) )

of elementary problems for 0j is identical.

Periodicity is applied in the J = ±N blades and their

wakes. The wake boundary condition is given by
U

AC pj (xj - xk),tjl =0 on wj+k k = ,N - 1

(A13)

ACpj (;F + tj= 0 on wj L  = 1,N - 1

This is equivalent to keeping all blades stationary except
the jth blade and allows the relevant wave transmission

through each blade wake. Note that the time is always tj,

19
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the time associated with the jth blade. No interblade phase

lag is required at this stage.

When *j are summed, together with the boundary conditions,

the problem defined by Equations (A5), (AlO), (All), (A12),

and (A13) is identical to the problem defined by Equations

(Al), (A2), (A3), and (A4). Hence the problem for any time

lag to between blades can be constructed from the superposition

of the elementary problem defined by Equations (A9), (All),

(A12), and (A13). The superposition mechanism is as follows.

Let the solution to the elementary problem for j = 0

° be given by *o(X,t). The solution for j(x,tj) is then

* given by

0 J (xj ,t = oo(X,t) (A4)

Since the functional form of o with both x and t is known

from the elementary solution for j = 0 this reparameterization

is trivial. The final solution for the zeroth blade is --ten

given by Equations (A5) and (A14); thus

N. (t)= -N ° ( - j.,t - jt o ) (AI5)

Thus the complete time dependent cascade flow for any inter-

• blade phase angle can be constructed by superposition of the

*elementary problem defined by Equations (A5), (AlO), (All),

(A12), and (A13).

If O(x,t) and its derivatives are continuous a similar

relation to Equation (A14) can be constructed for the pressure

coefficient Cp (x,t). In addition, similar formulae can be

derived for the lift and moment coefficients.

The idea discussed above can be extended to discontin-

uous transonic flows using the method of strained coordinates

(ref. 2). Results are discussed in the main text.
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CONCLUDING REMARKS

The main contribution to the computation time for an

unsteady calculation of cascade flutter in a transonic flow

is the need to repeat the calculation for a range of inter-

blade phase angles. The present analysis shows how this

problem can be eliminated by a judicious choice of elementary

* solutions.
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APPENDIX B

LOW STORAGE COMPUTATION OF THE
ELEMENTARY SOLUTIONS

In Appendix A it has been shown how an oscillatory flow

or an indicial response can be constructed from the super-

position of elementary solutions. These elementary solutions

consist of one blade moving with other blade held stationary

and it becomes clear that the computational storage necessary

to retain the information for all the blades in the cascade

can be considerable. In this Appendix a suggestion for

computing the elementary solution from a computation of the

flow between three blades is outlined. Because of the reduced

number of blades the computer storage requirements are reduced.

In Appendix A the solution f(x,t) is given in terms of

the elementary solution 0 (x,t) by

N
(x t) I 00o(X - R ft -jt o  (B)

j=N

where to is the interblade phase lag and Rj is a spatial shift

vector relating the location of the jth blade to the axis.

Now if the interblade phase lag is zero then all the

* blades are moving in sequence and blade-to-blade periodicity

exists. Hence a computation of the cascade requires only

- three blades with periodic boundary conditions. If such a

solution is known, then

N
"(x,t) o - Rjt) (B2)

j=-N

Assume now for simplicity that the cascade is unstaggered,

then xj yj. If the elementary solution throughout the

cascade can be represented by some series in the normal

variable, y, say then

23

o r i:: •. i •..



(x t) A (x,t) f (y) (B3)
0p=O P' p

where the vector x has been decomposed into its axial and

normal components (x,y), respectively. A (x,t) is an
p

unknown coefficient at x at time t and the f p(y) are an

appropriate orthogonal set of functions representing the
variation of 0 (x,t) with y throughout the cascade. Substi-

tution of Equation (B3) into Equation (B2) gives

N P
(xt)= I I A (x,t)f p(y - yj) (B4)

j=-N p=O P

If, in the interval between the three blades, f(x,t) is known

at P stations in the y-directions then Equation (B4) gives

equations for the P unknowns, A . Once the A are known

then the elementary solution can be constructed using

Equation (B3). The total solution for any interblade phase

lag, t can then be constructed using the ideas in Appendix A.

I0
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0

(py f XAIRFOIL
- SURFACE

- *0-

- Figure 1. LTRAN2 mesh schematic and boundary
* conditions for an isolated airfoil.
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__________ U UUPPER
S LADE

0

BLADE

Figure 2. Cascade mesh schematic and boundary
conditions for steady state, single blade
period. Mesh is clustered near blades,

stretched fore and aft.
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Figure 3. steady pressure distribution at M =.75

for NACA 0012 airfoil, free air vs. perioaic
(cascade) boundary condition.
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NACA 0012 CASCADE
BLADE *3 INDICIAL RESPONSE

z

8O0.04-

00.08

R TIME IN RADIANS

l0004

• . Figure 5. Plot of indicial lift vs. time for
~blade no. 3 of a 5-blade cascade.

do-

29



NACA 0012 CASCADE
-, LOW FREQUENCY OSCILLATION kwO.2

..08- -FIITE DIFFERENCE
--- WICIAL CONVOLUTION

.04

C O 0...... ..

-.04-

.08.
0.0 6.0 52.0IS

TIME IN RADIANS

Figure 6. Comparison of finite difference and
indicial calculations of oscillatory lift

coefficient, k =0.2.
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* NACA 0012 CASCADE
HIGH FREQUENCY OSCILLATION Its 10.0

-...FINITE DIFFERENCE
.101.INDICIAL CONVOLUTION

-.05.

-.10 ..............
00 60 12.0 18.0 2.

* TIME IN RADIANS

Figure 7. Comparison of finite difference and
indicial calculations of oscillatory lift

coefficient, k =10.0.
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.06 NACA 0012 CASCADE
BLADE BENDING MODE
4 TH CYCLE

.06

.04

.02

100

. .M4 .5

X/c

Figure 8. Plot of unsteady pressure difference,
4th cycle, 1st harmonic, for blade #4 bending
mode, 6-blade unstaggered cascade of MACA

'4 00012 airfoils. Phase lag is 180 deg.
(compare Verdoi and Caspar, Fig. 8).
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NACA 0012 CASCADE
*BLADE TORSION MODE

.40 4TH CYCLE

.20 -

M ".5

ACp 0 ........................... -

- IMAGINARY

2/C

Figure 9. Plot of unsteady pressure difference,
4th cycle, 1st harmonic, for blade #4 torsional
mode, 6-blade unstaggered cascade of NACA 00012

airfoils. Phase lag is 180 deg. (compare
Verdon and Caspar, Fig. 9)
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